Issue 44, 2015

Synthesis and energetic properties of high-nitrogen substituted bishomocubanes

Abstract

Synthesis, thermodynamic characterization, and energetic properties of three novel high-nitrogen bishomocubane-based compounds DADMBHC, DTetzBHC and DPTrizDMBHC are reported here. These compounds have higher heats of formation (HoFs) and higher energy densities as compared to traditional hydrocarbon fuels. Densities, gas phase HoF and their optimized molecular structure geometries were calculated with various levels of theory. In general, the calculated HoFs of these compounds turn out to be extremely high. Ballistic properties such as vacuum specific impulse and density vacuum specific impulse were calculated using the NASA Chemical Equilibrium and Applications utility. Propulsive properties were compared with liquid bipropellants (RP1) and solid propellants (AP) and explosive properties were compared with RDX. The density specific impulse demonstrated an improvement of 35 s for DADMBHC and DTetzBHC over standard liquid hydrocarbon HTPB, thus showing promise as possible monomers to replace HTPB as a fuel-binder. The density specific impulses of these compounds were also found to be significantly higher than that of RP1, e.g. that of DADMBHC was found to be higher by 84 s, making them potentially good candidates as propellants for use under volume-limited conditions. The detonation properties showed that these compounds have low potential as explosives. TGA, coupled with IR spectroscopy, revealed that DADMBHC and DPTrizDMBHC evaporate readily while DTetzBHC decomposes partially.

Graphical abstract: Synthesis and energetic properties of high-nitrogen substituted bishomocubanes

Supplementary files

Article information

Article type
Paper
Submitted
15 Jul 2015
Accepted
14 Sep 2015
First published
14 Sep 2015
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2015,3, 22118-22128

Synthesis and energetic properties of high-nitrogen substituted bishomocubanes

S. Lal, L. Mallick, S. Rajkumar, O. P. Oommen, S. Reshmi, N. Kumbhakarna, A. Chowdhury and I. N. N. Namboothiri, J. Mater. Chem. A, 2015, 3, 22118 DOI: 10.1039/C5TA05380C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements