Facile fabrication of robust superhydrophobic porous materials and their application in oil/water separation†
Abstract
Utilizing superhydrophobic porous materials in oil/water separation has attracted increasing research interest, however, most of these materials are usually complicated to fabricate or easily lose their functions in harsh circumstances. In this study, dispersion of poly[(3,3,3-trifluoropropyl)methylsiloxane] (PTFPMS) micro–nano aggregations in acetone/water was facially prepared via a simple phase separation method. The aggregations can be easily coated on the skeletons of various 2D and 3D porous substrates, endowing the porous materials with superhydrophobicity. The prepared superhydrophobic materials show excellent resistance to chemical erosion, mechanical abrasion, and high temperature (up to 400 °C). This robust superhydrophobicity promises application of the resultant porous materials in harsh environments, and examples of using these superhydrophobic porous materials to separate oil/water mixtures have been demonstrated. This simple and universal method is suitable for the large-scale preparation of porous materials with robust superhydrophobicity.