Issue 48, 2015

Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light

Abstract

A layered nanoarchitecture composed of photoactive MOFs of UiO-66-NH2 and graphene was facilely fabricated herein by an innovative strategy, which utilizes a noncovalent methodology for graphene functionalization combined with in situ self-assembling and a solvothermal synthesis technique. The fabricated hybrids were characterized and evaluated in detail by the selective photocatalytic oxidation of benzyl alcohol under visible light. The hybrid displayed improved efficiency with high selectivity, compared with the parent MOF. The characterization results clearly demonstrate that this originates from the sandwich-like hierarchical nanoarchitecture formed by the compact interaction between UiO-66-NH2 and graphene via the adopted mediator. The synthesis strategy was also proven effective in building the rGO/NH2-MIL-125(Ti) hierarchical nanoarchitecture. Thus, this work offers a general strategy for constructing MOF/graphene sandwich heterostructures, which have great potential in the fields of electronics, optics, optoelectronics, and photoconversion.

Graphical abstract: Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2015
Accepted
25 Oct 2015
First published
26 Oct 2015

J. Mater. Chem. A, 2015,3, 24261-24271

Author version available

Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light

J. Xu, S. He, H. Zhang, J. Huang, H. Lin, X. Wang and J. Long, J. Mater. Chem. A, 2015, 3, 24261 DOI: 10.1039/C5TA06838J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements