Issue 48, 2015

Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates

Abstract

The morphologies of the perovskite (e.g. CH3NH3PbI3) layer are demonstrated to be critically important for highly efficient perovskite solar cells. This work applies 3-aminopropanoic acid as a self-assembled monolayer (C3-SAM) on a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL) to modify the crystallinity and coverage of the CH3NH3PbI3−xClx film, resulting in a much smoother perovskite surface morphology together with a PCE increase from 9.7% to 11.6%. Since all fabrication steps of these inverted structure devices are carried out under low temperature conditions (processing temperature < 120 °C), it is possible to employ this method on flexible polymer substrates using roll-coating for the layer deposition. The roll-coated perovskite film on C3-SAM modified PEDOT:PSS presents a similar trend of improvement and results in enhanced PCE from 3.7% to 5.1%. The successful application of the facile HTL modification indicates a common strategy for SAM material design and selection for efficiency enhancement in perovskite photovoltaic devices.

Graphical abstract: Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2015
Accepted
06 Oct 2015
First published
06 Oct 2015

J. Mater. Chem. A, 2015,3, 24254-24260

Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates

Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs and H. Chen, J. Mater. Chem. A, 2015, 3, 24254 DOI: 10.1039/C5TA07008B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements