Issue 4, 2015

Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery

Abstract

Polyethylenimine (PEI) is one of the most promising polymeric gene vectors, however its applications are limited by serious cytotoxicity and moderate transfection efficacy. Fluorination is an efficient strategy to improve the transfection efficacy of cationic polymers while reducing their cytotoxicity. Here we grafted different fluoroalkyl chains to PEI via oxirane and anhydride reactions. The fluorinated PEIs show superior transfection efficacy on both 2D and 3D cell cultures to unmodified PEI. These fluorinated polymers allow efficient gene transfection at relatively low nitrogen to phosphorus ratios and thereby ensure low cytotoxicity on the transfected cells. Fluorinated PEIs prepared via the oxirane reaction are much more stable in aqueous solutions than the ones prepared by the anhydride reaction and show reproducible gene transfection during a period of 6 months. This study extends the applicable scope of fluorination on improving the transfection efficacy of polymers and generates a list of gene vectors for efficient 2D and 3D cell culture gene transfection.

Graphical abstract: Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2014
Accepted
19 Nov 2014
First published
19 Nov 2014

J. Mater. Chem. B, 2015,3, 642-650

Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery

J. Lv, H. Chang, Y. Wang, M. Wang, J. Xiao, Q. Zhang and Y. Cheng, J. Mater. Chem. B, 2015, 3, 642 DOI: 10.1039/C4TB01447B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements