Issue 10, 2015

Co-delivery of doxorubicin and P-glycoprotein siRNA by multifunctional triblock copolymers for enhanced anticancer efficacy in breast cancer cells

Abstract

Combined treatment of chemotherapeutics and small interfering RNAs (siRNAs) is a promising therapy strategy for breast carcinoma via their synergetic effects. In this study, to improve the therapeutic effect of doxorubicin (DOX), novel triblock copolymers, folate/methoxy-poly(ethylene glycol)-block-poly(L-glutamate-hydrazide)-block-poly(N,N-dimethylaminopropyl methacrylamide) (FA/m-PEG-b-P(LG-Hyd)-b-PDMAPMA), were synthesized and used as a vehicle for the co-delivery of DOX and P-glycoprotein (P-gp) siRNA into breast cancer cells. The triblock copolymers were synthesized by a combination of ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride using cystamine-terminated heterotelechelic PEG derivatives possessing folate or methoxy end groups (FA/m-PEG-Cys) as initiators and reversible addition–fragmentation chain transfer polymerization of N,N-dimethylaminopropyl methacrylamide followed by hydrazinolysis. The successful synthesis of the copolymers was confirmed by 1H NMR and gel permeation chromatography. DOX was covalently conjugated onto the poly(L-glutamate-hydrazide) blocks via a pH-labile hydrazone linkage, and the DOX-conjugated triblock copolymers could self-assemble into nanoparticles in aqueous solutions. P-glycoprotein (P-gp) siRNA was then bound to the cationic poly(N,N-dimethylaminopropyl methacrylamide) (PDMAPMA) blocks through an electrostatic interaction, resulting in the formation of spherical nanocomplexes with an average diameter of 196.8 nm and a zeta potential of +28.3 mV. The in vitro release behaviors of DOX and siRNA from the nanocomplexes were pH- and reduction-dependent, and the release rates were much faster under a reductive acidic condition (pH 5.0, glutathione: 10 mM) simulating the intracellular endo-lysosomal environment of cancer cells compared to physiological conditions. The fast payload release rates were closely related to both the glutathione-triggered detachment of PEG blocks from the nanocomplex surface and the pH-sensitive cleavage of hydrazone linkages. FA-decorated nanocomplexes showed higher cellular uptake efficiency and cytotoxicity against MCF-7 cells than FA-free nanocomplexes, as confirmed by confocal laser scanning microscopy, transmission electron microscopy, MTT and flow cytometry analyses. Our results demonstrated that the multifunctional triblock copolymer-mediated co-delivery of DOX and P-gp siRNA might be a new promising therapeutic strategy for breast cancer treatment.

Graphical abstract: Co-delivery of doxorubicin and P-glycoprotein siRNA by multifunctional triblock copolymers for enhanced anticancer efficacy in breast cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2015
Accepted
27 Jan 2015
First published
27 Jan 2015

J. Mater. Chem. B, 2015,3, 2215-2228

Co-delivery of doxorubicin and P-glycoprotein siRNA by multifunctional triblock copolymers for enhanced anticancer efficacy in breast cancer cells

M. Xu, J. Qian, A. Suo, N. Cui, Y. Yao, W. Xu, T. Liu and H. Wang, J. Mater. Chem. B, 2015, 3, 2215 DOI: 10.1039/C5TB00031A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements