Radiolanthanide-loaded agglomerated Fe3O4 nanoparticles for possible use in the treatment of arthritis: formulation, characterization and evaluation in rats
Abstract
This investigation reports the preparation of agglomerated Fe3O4 nanoparticles and evaluation of its utility as a viable carrier in the preparation of radiolanthanides as potential therapeutic agents for the treatment of arthritis. The material was synthesized by a chemical route and characterized by XRD, FT-IR, SEM, EDX and TEM analysis. The surface of agglomerated particle possessed ion pairs (–O−:Na+) after dispersing particles in a NaHCO3 solution at pH = 7 which is conducive for radiolanthanide (*Ln = 90Y, 153Sm, 166Ho, 169Er, 177Lu) loading by replacement of Na+ ions with tripositive radiolanthanide ions. Radiolanthanide-loaded particulates exhibited excellent in vitro stability up to ∼3 half-lives of the respective lanthanide radionuclides when stored in normal saline at 37 °C. The radiochemical purities of the loaded particulates were found to be retained to the extent of >70% after 48 h of storage when challenged by a strong chelator DTPA present at a concentration as high as 5 mM, indicating fairly strong chemical association of lanthanides with agglomerated Fe3O4 nanoparticles. Biodistribution studies of 90Y and 166Ho-loaded particulates carried out after intra-articular injection into one of the knee joints of a normal Wistar rat revealed near-complete retention of the radioactive preparations (>98% of the administered radioactivity) within the joint cavity even after 72 h post injection. This was further confirmed by sequential whole-body radio-luminescence imaging. These experimental results are indicative of the potential use of radiolanthanide-loaded agglomerated Fe3O4 nanoparticles for the treatment of arthritis.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry B Hot Papers