Issue 29, 2015

Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging

Abstract

Arterial and venous thrombosis are among the most common causes of death and hospitalization worldwide. Nanotechnology approaches hold great promise for molecular imaging and diagnosis as well as tissue-targeted delivery of therapeutics. In this study, we developed and investigated bioengineered nanoprobes for identifying thrombus formation; the design parameters of nanoparticle shape and surface chemistry, i.e. incorporation of fibrin-binding peptides CREKA and GPRPP, were investigated. Two nanoparticle platforms based on plant viruses were studied—icosahedral cowpea mosaic virus (CPMV) and elongated rod-shaped tobacco mosaic virus (TMV). These particles were loaded to carry contrast agents for dual-modality magnetic resonance (MR) and optical imaging, and both modalities demonstrated specificity of fibrin binding in vitro with the presence of targeting peptides. Preclinical studies in a carotid artery photochemical injury model of thrombosis confirmed thrombus homing of the nanoprobes, with the elongated TMV rods exhibiting significantly greater attachment to thrombi than icosahedral (sphere-like) CPMV. While in vitro studies confirmed fibrin-specificity conferred by the peptide ligands, in vivo studies indicated the nanoparticle shape had the greatest contribution toward thrombus targeting, with no significant contribution from either targeting ligand. These results demonstrate that nanoparticle shape plays a critical role in particle deposition at the site of vascular injury. Shaping nanotechnologies opens the door for the development of novel targeted diagnostic and therapeutic strategies (i.e., theranostics) for arterial and venous thrombosis.

Graphical abstract: Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2015
Accepted
09 Jun 2015
First published
10 Jun 2015

J. Mater. Chem. B, 2015,3, 6037-6045

Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging

A. M. Wen, Y. Wang, K. Jiang, G. C. Hsu, H. Gao, K. L. Lee, A. C. Yang, X. Yu, D. I. Simon and N. F. Steinmetz, J. Mater. Chem. B, 2015, 3, 6037 DOI: 10.1039/C5TB00879D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements