Issue 7, 2015

Modification of the coordination environment of Eu2+ in Sr2SiO4:Eu2+ phosphors to achieve full color emission

Abstract

Sr2SiO4:Eu2+ phosphors were synthesized by a conventional solid state reaction method. After a low amount of nitrogen (∼1 mol% of oxygen) was incorporated to modify the local coordination environment of Eu2+, the phosphor showed a single intense broad band emission centered at 625 nm under blue light (453 nm) excitation, and three emission bands (480, 555 and 625 nm) under ultraviolet irradiation. The incorporation of nitrogen was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR) and absorption spectroscopy. 480 and 555 nm emissions originated from Eu2+ ions occupying the Sr(I) sites and Sr(II) sites in the Sr2SiO4 crystal, respectively, while 625 nm emission originated from the nitrogen coordinated Eu2+ ions. The local coordination structure around Eu2+ ions in the red phosphors was analyzed with the aid of density functional theory based first principles calculations. The analysis showed that nitrogen should preferentially substitute the O5′ sites around Eu2+ in Sr(II) sites, which agreed fairly well with the experimental results from the X-ray absorption fine structure (XAFS) and the electron paramagnetic resonance (EPR) spectra. The electronic structure analysis confirmed the lowered center of gravity of Eu 5d energy states and the broadened Eu 4f energy states, which are due to the tightened coordination environment and the hybridization of the 4f states of Eu and 2p states of nitrogen–oxygen, leading to a red emission. The novel nitrogen modified Sr2SiO4:Eu2+ could serve as a full color phosphor for near-UV LEDs or a red-emitting phosphor for blue LEDs.

Graphical abstract: Modification of the coordination environment of Eu2+ in Sr2SiO4:Eu2+ phosphors to achieve full color emission

Article information

Article type
Paper
Submitted
03 Jul 2014
Accepted
06 Dec 2014
First published
07 Jan 2015

J. Mater. Chem. C, 2015,3, 1567-1575

Author version available

Modification of the coordination environment of Eu2+ in Sr2SiO4:Eu2+ phosphors to achieve full color emission

L. Ju, X. Xu, L. Hao, Y. Lin and M. Lee, J. Mater. Chem. C, 2015, 3, 1567 DOI: 10.1039/C4TC01435A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements