Issue 2, 2015

Flexible quantum dot–PVA composites for white LEDs

Abstract

Integration of blue light-emitting diode (LED) chips with yellow phosphors has been the most practical way to achieve white lighting, but finding a low-cost alternative for Y3Al5O12:Ce3+ (YAG:Ce) phosphors, which are expensive and lack red emission, is still a great challenge. The present report documents a strategy of combining quantum dot–polyvinyl alcohol (PVA) composites and blue chips for white LEDs. Cadmium-free and water-soluble ZnSe:Mn/ZnS quantum dots (QDs) were synthesized through a nucleation doping strategy, and then embedded in PVA. The flexible composite contains well-dispersed QDs and exhibits highly efficient photoluminescence at 590–635 nm, and hence is available for resin-free white LEDs. Besides excellent stability, the assembled white LEDs possess promising color characteristics, including a color rendering index (CRI) value of 93.5, a correlated color temperature (CCT) of 2913 K at Commission Internationale de l'Eclairage (CIE) color coordinates of (0.41,0.37), and a luminous efficacy (LE) of 18.9 lm W−1 under 300 mA current excitation. This work demonstrates that such a silica-coated QD–PVA composite plate, as a reliable color converter, would be promising for the next-generation QD-based LEDs.

Graphical abstract: Flexible quantum dot–PVA composites for white LEDs

Supplementary files

Article information

Article type
Communication
Submitted
08 Oct 2014
Accepted
13 Nov 2014
First published
14 Nov 2014

J. Mater. Chem. C, 2015,3, 257-264

Author version available

Flexible quantum dot–PVA composites for white LEDs

A. Cosgun, R. Fu, W. Jiang, J. Li, J. Song, X. Song and H. Zeng, J. Mater. Chem. C, 2015, 3, 257 DOI: 10.1039/C4TC02256D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements