Issue 6, 2015

Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport

Abstract

A new series of benzobisthiadiazole (BBT)-based donor–acceptor copolymers, namely, PBBT-FT, PBBT-T-FT, and PBBT-Tz-FT, with different π-conjugated bridges have been developed for polymer thin film transistors (TFTs). It was found that inserting different π-conjugated bridges into the backbone of the polymer allowed tailoring of opto-electrical properties, molecular organizations, and accordingly, ambipolar transport of TFTs. The UV-vis-NIR spectra of all three polymers were similar with the low band gaps of around 1.1 eV. While the lowest unoccupied molecular orbital (LUMO) energy levels were also similar (around −3.8 eV), the highest occupied molecular orbital (HOMO) energy levels varied from −5.05 to −5.42 eV because of the different π-conjugated bridges; moreover, their TFTs exhibited different ambipolar transport. p-Type dominant TFT performances with the hole mobility (μh) reaching 0.13 cm2 V−1 s−1 were observed for the prototype polymer PBBT-FT. However, the device based on PBBT-T-FT with thiophene bridges displayed lower but more balanced hole (μh) and electron (μe) mobilities of 6.5 × 10−3 and 1.2 × 10−3 cm2 V−1 s−1, respectively. The device based on PBBT-Tz-FT with the thiazole units exhibited more evenly balanced hole and electron mobilities (μh/μe = 0.45) along with a significantly enhanced μe ∼0.02 cm2 V−1 s−1. These different semiconducting features were ascribed to different molecular orientations and film morphologies revealed by wide-angle X-ray scattering (WAXS) and atomic force microscopy (AFM).

Graphical abstract: Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2014
Accepted
13 Dec 2014
First published
17 Dec 2014

J. Mater. Chem. C, 2015,3, 1196-1207

Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport

Y. Wang, T. Kadoya, L. Wang, T. Hayakawa, M. Tokita, T. Mori and T. Michinobu, J. Mater. Chem. C, 2015, 3, 1196 DOI: 10.1039/C4TC02273D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements