Issue 28, 2015

Transistors fabricated using the single crystals of [8]phenacene

Abstract

Field-effect transistors (FETs) with single crystals of a new phenacene-type molecule, [8]phenacene, were fabricated and characterized. This new molecule consists of a phenacene core of eight benzene rings, with an extended π-conjugated system, which was recently synthesized for use in an FET by our group. The FET characteristics of an [8]phenacene single-crystal FET with SiO2 gate dielectrics show typical p-channel properties with an average field-effect mobility, 〈μ〉, as high as 3(2) cm2 V−1 s−1 in two-terminal measurement mode, which is a relatively high value for a p-channel single-crystal FET. The 〈μ〉 was determined to be 6(2) cm2 V−1 s−1 in four-terminal measurement mode. Low-voltage operation was achieved with PbZr0.52Ti0.48O3 (PZT) as the gate dielectric, and an electric-double-layer (EDL) capacitor. The 〈μ〉 and average values of absolute threshold voltage, 〈|Vth|〉, were 1.6(4) cm2 V−1 s−1 and 5(1) V, respectively, for PZT, and 4(2) × 10−1 cm2 V−1 s−1 and 2.38(4) V, respectively, for the EDL capacitor; these values were evaluated in two-terminal measurement mode. The inverter circuit was fabricated using [8]phenacene and N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide single-crystal FETs. This is the first logic gate circuit using phenacene molecules. Furthermore, the relationship between μ and the number of benzene rings was clarified based on this study and the previous studies on phenacene single-crystal FETs.

Graphical abstract: Transistors fabricated using the single crystals of [8]phenacene

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2015
Accepted
15 Jun 2015
First published
24 Jun 2015

J. Mater. Chem. C, 2015,3, 7370-7378

Author version available

Transistors fabricated using the single crystals of [8]phenacene

Y. Shimo, T. Mikami, H. T. Murakami, S. Hamao, H. Goto, H. Okamoto, S. Gohda, K. Sato, A. Cassinese, Y. Hayashi and Y. Kubozono, J. Mater. Chem. C, 2015, 3, 7370 DOI: 10.1039/C5TC00960J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements