Issue 26, 2015

The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate

Abstract

Ruthenium(II) tetra-15-crown-5-phthalocyaninate with axially coordinated molecules of pyrazine [(15C5)4Pc]Ru(pyz)2 (1) was synthesized from a carbonyl complex [(15C5)4Pc]Ru(CO)(MeOH) (2), and the structure of the solvate complex (1)·6CHCl3 was revealed using the single crystal X-ray diffraction method. Analysis of the crystal packing showed that the weak intermolecular interactions, such as CH⋯π, CH⋯N, CH⋯O and CH⋯Cl, played an essential role in the formation of stable assemblies and their organization within the crystals. The interplay between the intramolecular axial coordinated pyrazine contacts and the weak intermolecular interactions of solvate molecules with crown-ether fragments provided the basis for rationalizing the observed self-assembly of molecules in solutions of tetrachloroethane and polymeric composites with polyvinylcarbazole. The self-assembly was investigated using UV-Vis spectroscopy, dynamic light scattering measurements, atomic force microscopy and transmission electron microscopy techniques. The formation of nanoparticles of complex (1) from a tetrachloroethane solution after three cycles of heating to 70 °C/cooling to 5 °C and two days storage was proved. Thin films (7 μm) of polymeric composites with polyvinylcarbazole prepared from a solution containing nanoparticles exhibited a nonlinear optical response measured by the Z-scan technique with application of femtosecond (1030 nm) and nanosecond (1064 nm) pulse lasers. The measured third-order susceptibility (χ(3)) of the polyvinylcarbazole composite with 4 wt% of complex (1) was equal to 1.94 × 10−10 esu, while the same composite prepared without the previously described special treatment had zero susceptibility. This result proves the essential role of self-assembly in future development of nonlinear optical materials.

Graphical abstract: The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2015
Accepted
18 May 2015
First published
18 May 2015

J. Mater. Chem. C, 2015,3, 6692-6700

Author version available

The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate

Y. G. Gorbunova, A. D. Grishina, A. G. Martynov, T. V. Krivenko, A. A. Isakova, V. V. Savel'ev, S. E. Nefedov, E. V. Abkhalimov, A. V. Vannikov and A. Yu. Tsivadze, J. Mater. Chem. C, 2015, 3, 6692 DOI: 10.1039/C5TC00965K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements