Issue 33, 2015

Design, synthesis and characterization of a new blue phosphorescent Ir complex

Abstract

Being incompatible with host materials in a physically blended emitting layer, phosphorescent dyes are prone to form aggregates induced by Joule heat in devices under work. In this work, a new and efficient blue phosphorescent dye Cz-C8-FIrpic was designed and synthesised by incorporating 9-phenyl-9H-carbazole into a commonly used blue emissive iridium complex bis(4,6-(difluorophenyl)pyridine-N,C2′)picolinate (FIrpic) via an alkyl chain linkage. This phosphorescent dye exhibits similar photophysical properties to the units of FIrpic and 9-phenyl-9H-carbazole in solutions. In solid films of Cz-C8-FIrpic, the energy transfer from 9-phenyl-9H-carbazole to FIrpic units is effective. The Cz-C8-FIrpic doped emissive layer was investigated by AFM, STEM-EDS, transient photoluminescence decay curves and molecular dynamics simulations. The results show that in the Cz-C8-FIrpic doped film the phase aggregation of FIrpic units is less severe than that in the typically used FIrpic film. In addition, the optimized Cz-C8-FIrpic based device achieved a maximum luminance of 25 142 cd m−2, a maximum EQE of 8.5% and a maximum current efficiency of 22.5 cd A−1 which is about 15% higher than that of the control device based on FIrpic. We conclude that grafting a typically used dye to functional groups with alkyl chains is useful to restrict phase separation in physically blended emitting layers, and thus can achieve high electroluminescence performances.

Graphical abstract: Design, synthesis and characterization of a new blue phosphorescent Ir complex

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2015
Accepted
16 Jul 2015
First published
20 Jul 2015

J. Mater. Chem. C, 2015,3, 8675-8683

Design, synthesis and characterization of a new blue phosphorescent Ir complex

C. Yao, J. Li, J. Wang, X. Xu, R. Liu and L. Li, J. Mater. Chem. C, 2015, 3, 8675 DOI: 10.1039/C5TC01544H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements