The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC(100) four terminal devices†
Abstract
This communication reports for the first time, the impact of device geometry on the stress-dependent offset voltage of single crystal p-type 3C–SiC four terminal devices. Single crystal p-type 3C–SiC(100) was grown by low pressure chemical vapor deposition and three different device geometries (cross, rectangle and square) were fabricated using the conventional photolithography and dry etching processes. It was observed that the stress-dependent offset voltage of the devices strongly depends upon the device geometry and it can be increased by almost 100% by just selecting the appropriate device geometry. We also found that as the device is rotated within the (100) crystal plane its stress sensitivity varies from ≈0 to 9 × 10−11 Pa−1.