Individual single-crystal nanowires as electrodes for organic single-crystal nanodevices†
Abstract
Conductive, transparent, and flexible SnO2:Sb single-crystal nanowires are shown as electrodes for F16CuPc single-crystal nanowire devices on flexible plastic, which includes anisotropic-transport OFETs, electrode-movable OFETs, and p–n junction photovoltaic devices. The SnO2:Sb nanowires provide a good energy level match and excellent soft contact with F16CuPc nanowires, leading to multifaceted applications of the SnO2:Sb nanowire in nanowire electronics and optoelectronics, as well as high device performance. Combined with their good size compatibility, these results show that the conductive SnO2:Sb single-crystal nanowire opens a window into the fundamental understanding of the intrinsic properties of highly ordered organic semiconductors, optimization and miniaturization of organic nanocircuits, and development of new-generation flexible organic nanodevices.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry C Hot Papers