Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection
Abstract
The nanorods of cobalt phosphide have been prepared and evaluated as an electrocatalyst for non-enzyme glucose detection. The nanorods were used to modify the surface of an electrode and detect glucose without the help of an enzyme for the first time. The crystal structure and composition of cobalt phosphide were identified by XRD and XPS, respectively, and the morphology of the as-prepared samples was observed by FESEM and TEM. The electrochemical measurement results indicate that the CoP-based sensor exhibits excellent catalytic activity and a far lower detection potential compared to bare GCE. Specifically, the electrocatalytic mechanism of CoP in the detection of glucose was proposed based on a series of physical characterization methods, electrochemical measurements, and theoretical calculations.