DNA tetrahedron and star trigon nanostructures for target recycling detection of nucleic acid†
Abstract
Human immunodeficiency virus (HIV) is a retrovirus which attacks the human body's immune system and further leads to acquired immunodeficiency syndrome (AIDS). Nucleic acid detection is of great importance in the medical diagnosis of such diseases. Herein, we develop a simple and enzyme-free electrochemical method for the target recycling detection of nuclei acid. DNA tetrahedron and star trigon nanostructures are designed and constructed on the electrode interface for target capture and signal enrichment. This strategy is convenient and sensitive, with a limit of detection as low as 1 fM, and can also successfully distinguish single-base mismatched DNA. Therefore, the proposed method has a promising potential application for HIV DNA detection.