Issue 22, 2016

A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles

Abstract

A rapid, sensitive, and label-free SERS detection method for bacteria pathogens is reported for the first time. The method, which is based on the combination of polyethylenimine (PEI)-modified Au-coated magnetic microspheres (Fe3O4@Au@PEI) and concentrated Au@Ag nanoparticles (NPs), was named the capture–enrichment–enhancement (CEE) three-step method. A novel Fe3O4@Au microsphere with monodispersity and strong magnetic responsiveness was synthesized as a magnetic SERS substrate and amino functionalized by PEI self-assembly. The negatively charged bacteria were quickly captured and enriched by the positively charged Fe3O4@Au@PEI microspheres, and the bacteria SERS signal was synergistically enhanced by using Fe3O4@Au@PEI microspheres and Au@Ag NPs in conjunction. The CEE three-step method proved useful in tap water and milk samples, and the total assay time required was only 10 min. Results further demonstrated that the CEE three-step method could be a common approach for detecting a wide range of bacteria, as verified by its detection of the Gram-positive bacterium E. coli and Gram-positive bacterium S. aureus at a detection limit of as low as 103 cells per mL. Therefore, our CEE three-step method offered the significant advantages of short assay time, simple operating procedure, and higher sensitivity than previously reported methods of SERS-based bacteria detection.

Graphical abstract: A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2016
Accepted
05 Sep 2016
First published
05 Sep 2016

Analyst, 2016,141, 6226-6238

A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles

C. Wang, J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao and S. Wang, Analyst, 2016, 141, 6226 DOI: 10.1039/C6AN01105E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements