Issue 22, 2016

Evaluation of drug-mediated arrhythmic changes in spontaneous beating cardiomyocytes by AFM

Abstract

Arrhythmia caused by drug-induced cardiotoxicity is among the leading reasons for late-stage drug attrition and is therefore a core subject in safety testing of new compounds. Alternative methods such as surface and interface characterization approaches for assessing the drug-mediated cardiotoxicity should be promoted, in order to reduce, refine and replace the use of laboratory animals. Here, we investigate the possibility of using known human Ether-à-go-go-Related Gene (hERG) channel blockers to induce irregular beating patterns in the mouse and human induced pluripotent stem cell-derived (miPSC and hiPSC) cardiomyocyte (CM) model systems. An AFM-based approach was developed to precisely monitor the beating interval and rate of cardiomyocytes. Verification was implemented using three individual cardiovascular compounds to validate the potential application of this AFM approach as a complementary drug screening tool. Consistent with previous reports, isoproterenol increased the beating rate, with a more pronounced effect in the mouse CMs, nifedipine increased the beating rate in a dose-dependent manner, and sotalol induced arrhythmias with a significant variation in beating interval responses at increasing concentrations. The results of this initial study show that accurate analysis of individual drug-mediated effects can be achieved using our method, comparable to previous reports, and that a well-controlled AFM test of ion channel manipulation on human and murine-derived cardiomyocytes can be performed for investigation on multi-compound effects. Preliminary results indicate that the hERG blocker E-4031 can stimulate irregular, arrhythmic beating patterns in the cardiomyocytes from both species, and that immediate subsequent treatment with the hERG enhancer nicorandil can rescue these back to regular beating patterns, similar to those observed when the cells were untreated. This approach has not been extensively reported, and the use of our AFM system provides a platform to further investigate compound-induced ion channel effects in cardiomyocytes for potential application in pre-screening drug development stages.

Graphical abstract: Evaluation of drug-mediated arrhythmic changes in spontaneous beating cardiomyocytes by AFM

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2016
Accepted
14 Sep 2016
First published
21 Sep 2016

Analyst, 2016,141, 6303-6313

Evaluation of drug-mediated arrhythmic changes in spontaneous beating cardiomyocytes by AFM

A. T. Chen and S. Zou, Analyst, 2016, 141, 6303 DOI: 10.1039/C6AN01577H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements