Issue 7, 2016

Acoustotaxis – in vitro stimulation in a wound healing assay employing surface acoustic waves

Abstract

A novel, ultrasound based approach for the dynamic stimulation and promotion of tissue healing processes employing surface acoustic waves (SAW) on a chip is presented for the example of osteoblast-like SaOs-2 cells. In our investigations, we directly irradiate cells with SAW on a SiO2 covered piezoelectric LiNbO3 substrate. Observing the temporal evolution of cell growth and migration and comparing non-irradiated to irradiated areas on the chip, we find that the SAW–treated cells exhibit a significantly increased migration as compared to the control samples. Apart from quantifying our experimental findings on the cell migration stimulation, we also demonstrate the full bio compatibility and bio functionality of our SAW technique by using LDH assays. We safely exclude parasitic side effects such as a SAW related increased substrate temperature or nutrient flow by thoroughly monitoring the temperature and the flow field using infrared microscopy and micro particle image velocimetry. Our results show that the SAW induced dynamic mechanical and electrical stimulation obviously directly promotes the cell growth. We conclude that this stimulation method offers a powerful platform for future medical treatment, e.g. being implemented as a implantable biochip with wireless extra-corporal power supply to treat deeper tissue.

Graphical abstract: Acoustotaxis – in vitro stimulation in a wound healing assay employing surface acoustic waves

Article information

Article type
Paper
Submitted
22 Feb 2016
Accepted
22 Apr 2016
First published
03 May 2016
This article is Open Access
Creative Commons BY license

Biomater. Sci., 2016,4, 1092-1099

Acoustotaxis – in vitro stimulation in a wound healing assay employing surface acoustic waves

M. E. M. Stamp, M. S. Brugger, A. Wixforth and C. Westerhausen, Biomater. Sci., 2016, 4, 1092 DOI: 10.1039/C6BM00125D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements