Issue 8, 2016

Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles

Abstract

Research on quantitatively controlling the ligand density on the surface of nanocarriers is in the frontier and becomes a technical difficulty for targeted delivery system designing. In this study, we developed an improved pre-conjugation (Imp) strategy, in which herceptin as a ligand was pre-conjugated with DSPE-PEG2000-Mal via chemical cross-linking, followed by conjugation onto the surface of pre-prepared paclitaxel-loaded PLGA/DODMA nanoparticles (PDNs) through hydrophobic interaction and electrostatic attraction for paclitaxel delivery. Compared with the post-conjugation (Pos) strategy, in which the ligand was conjugated onto the nanoparticle surface after the preparation of the nanoparticles, it realized a precise control targeting effect via adjustment of the herceptin density on the surface of the nanoparticles. Within the range of 0–20% of DSPE-PEG2000-herceptin in the blend, it showed a linear relation with the ligand density on the surface of the nanoparticles. The Imp strategy protected the bioactivity of the ligand during the preparation of nanoparticles. At the same time it avoided the waste of an excess amount of herceptin to drive the conjugation reaction in comparison with the post-conjugation (Pos) strategy. The nanoparticles from the Imp strategy showed much better cytotoxicity (p < 0.001), tumor targeting and cellular uptake efficiency (p < 0.001) than that of the other strategies in BT474 cells, in which BT474 cells were HER2 receptor over-expression breast cancer cell lines. A significant reduction in cellular uptake of the nanoparticles from the Imp strategy was observed in the presence of sucrose and cytochalasin D, indicating that clathrin-mediated and caveolae-dependent endocytosis was as a primary mechanism of cellular entry for these antibody-modified nanoparticles.

Graphical abstract: Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles

Article information

Article type
Paper
Submitted
03 May 2016
Accepted
22 Jun 2016
First published
01 Jul 2016

Biomater. Sci., 2016,4, 1219-1232

Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles

K. Yu, Y. Zhou, Y. Li, X. Sun, F. Sun, X. Wang, H. Mu, J. Li, X. Liu, L. Teng and Y. Li, Biomater. Sci., 2016, 4, 1219 DOI: 10.1039/C6BM00308G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements