Issue 11, 2016

A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways

Abstract

Recent methodological developments in metabolic oligosaccharide engineering (MOE) pave the way for tremendous advances in glycobiology. Herein, we propose a Sequential Bioorthogonal Dual Strategy (SBDS) combining the use of two unprotected alkyne-tagged monosaccharide reporters (ManNAl and SiaNAl) with the bioligation of fluorescent probes by copper-catalysed azide–alkyne cycloaddition (CuAAC). With SBDS, we are able to shed light on trafficking and cellular uptake mechanisms of sialic acid. Using their corresponding analogues, we visualized that SiaNAl enters via endocytosis, whereas its biosynthetic intermediate ManNAl uptake is mediated by a yet unknown but specific plasma membrane transporter. Sialin, a lysosomal protein, is shown to be crucial for the export of exogenous sialic acid from lysosomes to the cytosol. Metabolic labeling with alkyne-tagged derivatives of N-acetylneuraminic acid (Neu5Ac) or N-acetylmannosamine (ManNAc) could thus be used to follow endocytosis in physiological vs. pathological conditions.

Graphical abstract: A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways

Supplementary files

Article information

Article type
Communication
Submitted
24 Oct 2015
Accepted
16 Dec 2015
First published
16 Dec 2015

Chem. Commun., 2016,52, 2318-2321

Author version available

A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways

P. A. Gilormini, C. Lion, D. Vicogne, T. Levade, S. Potelle, C. Mariller, Y. Guérardel, C. Biot and F. Foulquier, Chem. Commun., 2016, 52, 2318 DOI: 10.1039/C5CC08838K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements