Issue 7, 2016

Experimental and computational evaluation of the barrier to torsional rotation in a butadiyne-linked porphyrin dimer

Abstract

The barrier to torsional rotation in a butadiyne-linked porphyrin dimer has been determined in solution using variable temperature UV-vis-NIR spectroscopy: ΔH = 5.27 ± 0.03 kJ mol−1, ΔS = 10.69 ± 0.14 J K−1 mol−1. The value of ΔH agrees well with theoretical predictions. Quantum chemical calculations (DFT) were used to predict the torsion angle dependence of the absorption spectrum, and to calculate the vibronic fine structure of the S0 → S1 absorption for the planar dimer, showing that the absorption band of the planar conformer has a vibronic component overlapping with the 〈0|0〉 absorption of the perpendicular conformer. The torsion barrier in the porphyrin dimer is higher than that of 1,4-diphenylbutadiyne (calculated ΔH = 1.1 kJ mol−1). Crystallographic bond lengths and IR vibrational frequencies confirm that there is a greater contribution of the cumulenic resonance form in butadiyne-linked porphyrin dimers than in 1,4-diphenylbutadiyne. The DFT frontier orbitals of the twisted conformer of the porphyrin dimer are helical, when calculated in the absence of symmetry. The helical character of these orbitals disappears when D2d symmetry is enforced in the 90° twisted conformer. Helical representations of the frontier orbitals can be generated by linear combinations of the more localised orbitals from a symmetry-constrained calculation but they do not indicate π-conjugation. This work provides insights into the relationship between electronic structure and conformation in alkyne-linked conjugated oligomers.

Graphical abstract: Experimental and computational evaluation of the barrier to torsional rotation in a butadiyne-linked porphyrin dimer

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2015
Accepted
05 Jan 2016
First published
05 Jan 2016

Phys. Chem. Chem. Phys., 2016,18, 5264-5274

Author version available

Experimental and computational evaluation of the barrier to torsional rotation in a butadiyne-linked porphyrin dimer

M. D. Peeks, P. Neuhaus and H. L. Anderson, Phys. Chem. Chem. Phys., 2016, 18, 5264 DOI: 10.1039/C5CP06167A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements