Issue 16, 2016

Photo-degradation in air of the active layer components in a thiophene–quinoxaline copolymer:fullerene solar cell

Abstract

We have studied the photo-degradation in air of a blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), and how the photo-degradation affects the solar cell performance. Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, changes to the electronic structure of TQ1 and PCBM caused by illumination in ambient air are investigated and compared between the pristine materials and the blend. The NEXAFS spectra show that the unoccupied molecular orbitals of TQ1 are not significantly changed by the exposure of pristine TQ1 to light in air, whereas those of PCBM are severely affected as a result of photo-induced degradation of PCBM. Furthermore, the photo-degradation of PCBM is accelerated by blending it with TQ1. While the NEXAFS spectrum of TQ1 remains unchanged upon illumination in air, its valence band spectrum shows that the occupied molecular orbitals are weakly affected. Yet, UV-Vis absorption spectra demonstrate photo-bleaching of TQ1, which is attenuated in the presence of PCBM in blend films. Illumination of the active layer of TQ1:PCBM solar cells prior to cathode deposition causes severe losses in electrical performance.

Graphical abstract: Photo-degradation in air of the active layer components in a thiophene–quinoxaline copolymer:fullerene solar cell

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2015
Accepted
30 Mar 2016
First published
30 Mar 2016
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2016,18, 11132-11138

Author version available

Photo-degradation in air of the active layer components in a thiophene–quinoxaline copolymer:fullerene solar cell

R. Hansson, C. Lindqvist, L. K. E. Ericsson, A. Opitz, E. Wang and E. Moons, Phys. Chem. Chem. Phys., 2016, 18, 11132 DOI: 10.1039/C5CP07752D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements