Rotational effects on the dissociation dynamics of CHD3 on Pt(111)
Abstract
Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimensional quantum dynamical and full-dimensional ab initio molecular dynamics calculations, we show that the CD3 umbrella axis of CHD3 must reorient before the molecule reaches the barrier for C–H cleavage to occur in reaction on Pt(111). This rules out the application of the rotationally sudden approximation, as explicitly shown through a comparison with calculations using this approximation. Further, we suggest that the observed umbrella swing should strongly affect the sensitivity of C–H cleavage to the initial alignment of the molecule relative to the surface as found experimentally for closely related systems. We find very large differences in reactivity for molecules pre-excited to different rotational states, particularly if these states are associated with different orientations of the C–H bond.