Issue 10, 2016

Analysis of the 1A′ S11A′ S0 and 2A′ D01A′ S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy

Abstract

Resonance enhanced multiphoton ionization (REMPI) and mass analyzed threshold ionization (MATI) spectroscopy have been applied in order to investigate the vibrational structure of 1,2-dichloro-4-fluorobenzene (1,2,4-DCFB) in its first excited state (S1) and the cationic ground state (D0). The selection of the state prior to ionization resulted in MATI spectra with different intensity distributions thus giving access to many vibrational levels. To support the experimental findings, geometry optimizations and frequency analyses at DFT (density functional) and TDDFT (time-dependent density functional) levels of theory have been applied. Additionally, a multidimensional Franck–Condon approach has been used to calculate the vibrational intensities from the DFT calculations. An excellent agreement between simulated and measured REMPI and MATI spectra allowed for a confident assignment of vibrational levels and mechanisms active during excitation and ionization. In order to avoid any ambiguity regarding the assignment of the vibrational bands to normal modes, Duschinsky normal mode analysis has been performed to correlate the ground state (S0) normal modes of 1,2,4-DCFB with the benzene derived Wilson nomenclature. From the REMPI spectra the electronic excitation energy (EE) of 1,2-dichloro-4-fluorobenzene could be determined to be 35 714 ± 2 cm−1 while the MATI spectra yielded the adiabatic ionization energy (IE) of 1,2-dichloro-4-fluorobenzene which could be determined to be 73 332 ± 7 cm−1.

Graphical abstract: Analysis of the 1A′ S1 ← 1A′ S0 and 2A′ D0 ← 1A′ S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy

Article information

Article type
Paper
Submitted
22 Dec 2015
Accepted
01 Feb 2016
First published
04 Feb 2016

Phys. Chem. Chem. Phys., 2016,18, 7100-7113

Analysis of the 1A′ S11A′ S0 and 2A′ D01A′ S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy

S. Krüger and J. Grotemeyer, Phys. Chem. Chem. Phys., 2016, 18, 7100 DOI: 10.1039/C5CP07909H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements