Issue 12, 2016

Vibrationally resolved optical spectra and ultrafast electronic relaxation dynamics of diamantane

Abstract

We present theoretical simulations of the vibrationally resolved photoabsorption and photoemission spectra of diamantane combined with nonadiabatic dynamics simulations in order to identify the state responsible for the measured photoluminescence of diamantane and to determine the mechanism and the time-scales of the electronic state relaxation. Diamantane is a prototype representative of the diamondoid class of hydrocarbons which have recently gained significant interest due to their unique electronic properties. This molecule is characterised by an almost dark first excited state, which therefore cannot be directly excited. Moreover, the calculated vertical transition from the geometrically relaxed first excited state to the ground state also bears no intensity. However, recent experiments suggest that the observed photoluminescence originates from the lowest excited state. We have performed spectral simulations in the frame of the Herzberg–Teller approximation for vibronic transitions, which goes beyond the Franck–Condon approximation of constant transition dipole moments and takes into account their linear dependence on the geometrical deformations. In this way, the available experimental spectrum could be fully reproduced, resolving the issue about the origin of the photoluminescence. Moreover, the photoemission from the first excited state also implies that ultrafast nonradiative processes have to take place after the initial excitation of the bright electronic states. We have determined the mechanism and time-scales of these relaxation processes by performing nonadiabatic dynamics simulations in the manifold of s- and p-type Rydberg excited states. The simulations demonstrate that the lowest excited electronic state of diamantane gains significant population from higher-lying states already after several hundreds of femtoseconds. Thus, our dynamics simulations combined with spectra calculated using the Herzberg–Teller approximation allow us to fully explain the observed photoabsorption and photoemission properties of diamantane.

Graphical abstract: Vibrationally resolved optical spectra and ultrafast electronic relaxation dynamics of diamantane

Article information

Article type
Paper
Submitted
07 Jan 2016
Accepted
18 Feb 2016
First published
18 Feb 2016

Phys. Chem. Chem. Phys., 2016,18, 8701-8709

Vibrationally resolved optical spectra and ultrafast electronic relaxation dynamics of diamantane

M. I. S. Röhr, R. Mitrić and J. Petersen, Phys. Chem. Chem. Phys., 2016, 18, 8701 DOI: 10.1039/C6CP00137H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements