Weak-field laser phase modulation coherent control of asymptotic photofragment distributions
Abstract
Coherent control of the asymptotic photofragment state-resolved distributions by means of laser phase modulation in the weak-field limit is demonstrated computationally for a polyatomic molecule. The control scheme proposed applies a pump laser field consisting of two pulses delayed in time. Phase modulation of the spectral bandwidth profile of the laser field is achieved by varying the time delay between the pulses. The underlying equations show that such a phase modulation is effective in order to produce control effects on the asymptotic, long-time limit photofragment distributions only when the bandwidths of the two pulses overlap in a frequency range. The frequency overlap of the pulses gives rise to an interference term which is responsible for the modulation of the spectral profile shape. The magnitude of the range of spectral overlap between the pulses becomes an additional control parameter. The control scheme is illustrated computationally for the asymptotic photofragment state distributions produced from different scenarios of the Ne–Br2 predissociation. An experimental application of the control scheme is found to be straightforward.