Issue 38, 2016

Solvent effects on the thermal isomerization of a rotary molecular motor

Abstract

As molecular machines move to exciting applications in various environments, the study of medium effects becomes increasingly relevant. It is difficult to predict how, for example, the large apolar structure of a light-driven rotary molecular motor is affected by a biological setting or surface proximity, while for future nanotechnology precise fine tuning and full understanding of the isomerization process are of the utmost importance. Previous investigations into solvent effects have mainly focused on the relatively large solvent–solute interaction of hydrogen bonding or polarization induced by the isomerization process. We present a detailed study of a key step in the rotary process i.e. the thermal helix inversion of a completely apolar rotary molecular motor in 50 different solvents and solvent mixtures. Due to the relative inertness of this probe, we are able to study the influence of subtle solvent–solvent interactions upon the rate of rotation. Statistical analysis reveals which solvent parameters govern the isomerization process.

Graphical abstract: Solvent effects on the thermal isomerization of a rotary molecular motor

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2016
Accepted
02 Sep 2016
First published
08 Sep 2016

Phys. Chem. Chem. Phys., 2016,18, 26725-26735

Solvent effects on the thermal isomerization of a rotary molecular motor

A. S. Lubbe, J. C. M. Kistemaker, E. J. Smits and B. L. Feringa, Phys. Chem. Chem. Phys., 2016, 18, 26725 DOI: 10.1039/C6CP03571J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements