Issue 38, 2016

Retracted Article: Facile synthesis of hierarchical Mn3O4 superstructures and efficient catalytic performance

Abstract

The development of novel materials with excellent performance depends not only on the constituents but also on their remarkable micro/nanostructures. In this work, manganese oxide (Mn3O4) hausmannite structures with a uniform three-dimensional (3D) flower-like hierarchical architecture have been successfully synthesized by a novel chemical route using surfactants as structure-directing agents. Microstructure analysis indicates that the obtained 3D flower-like Mn3O4 superstructure consists of a large number of two-dimensional (2D) Mn3O4 nanosheets, which is different from the reported 3D Mn3O4 hierarchical structures based on zero-dimensional nanoparticles or one-dimensional nanowires and nanorods. This 3D Mn3O4 hierarchical architecture provides us with another type of manganese oxide with different superstructural characteristics, which may have potential practical applications in the catalytic degradation of organic pollutants. The catalytic performance of this hierarchical Mn3O4 superstructure, which was prepared by three different types of structure-directing agents, including cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), and poly(ethylene oxide)–poly(propylene oxide) (P123), was evaluated for the catalytic degradation of organic pollutants, e.g. methylene blue. Interestingly, the hierarchical Mn3O4 superstructure prepared using CTAB as a template showed efficient catalytic degradation. The formation processes and possible growth mechanism of this novel 3D Mn3O4 hierarchical superstructure assembled by 2D Mn3O4 nanosheets are discussed in detail.

Graphical abstract: Retracted Article: Facile synthesis of hierarchical Mn3O4 superstructures and efficient catalytic performance

Associated articles

Article information

Article type
Paper
Submitted
19 Jul 2016
Accepted
23 Aug 2016
First published
30 Aug 2016

Phys. Chem. Chem. Phys., 2016,18, 26602-26608

Social activity

Spotlight

Advertisements