Issue 42, 2016

Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1−yFeyO3−δ

Abstract

Oxygen transport in the mixed ionic–electronic conducting perovskite-oxides SrTi1−yFeyO3−δ (with y = 0.5 and y = 1.0) was studied by oxygen isotope exchange measurements. Experiments were performed on thin-film samples that were grown by Pulsed Laser Deposition (PLD) on MgO substrates. Isotope penetration profiles were introduced by 18O2/16O2 exchanges into the plane of the films at various temperatures in the range 773 < T/K < 973 at an oxygen activity aO2 = 0.5. Isotope profiles were determined subsequently by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and their analysis yielded tracer diffusion coefficients D* and oxygen surface exchange coefficients k*. Activation energies for oxygen diffusion ΔHD* and surface exchange ΔHk* were obtained. Isothermal values of D* and values of ΔHD* are compared with literature data as a function of Fe content. D* is seen to increase monotonically with Fe content; ΔHD* shows more complex behaviour. D* and ΔHD* are also compared with the predictions of defect-chemical models. Analogous comparisons with literature data for k* and ΔHk* indicate, in contrast to prior studies, no mechanistic difference between electron-poor and electron-rich materials. It is concluded that the single operative mechanism of surface exchange for the entire series of STF compositions requires conduction-band electrons (minority electronic charge-carriers).

Graphical abstract: Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1−yFeyO3−δ

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
08 Oct 2016
First published
10 Oct 2016

Phys. Chem. Chem. Phys., 2016,18, 29495-29505

Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1−yFeyO3−δ

V. Metlenko, W. Jung, S. R. Bishop, H. L. Tuller and R. A. De Souza, Phys. Chem. Chem. Phys., 2016, 18, 29495 DOI: 10.1039/C6CP05756J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements