Enhanced thermoelectric properties of SnSe polycrystals via texture control†
Abstract
We present in this manuscript that enhanced thermoelectric performance can be achieved in polycrystalline SnSe prepared by hydrothermal reaction and spark plasma sintering (SPS). X-ray diffraction (XRD) patterns revealed strong orientation along the [l 0 0] direction in bulk samples, which was further confirmed by microstructural observation through transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). It was noticed that the texturing degree of bulk samples could be controlled by sintering temperature during the SPS process. The best electrical transport properties were found in the sample which sintered at 450 °C in the direction vertical to the pressing direction, where the highest texturing degree and mass density were achieved. Coupled with the relatively low thermal conductivity, an average ZT of ∼ 0.38, the highest ever reported in pristine polycrystalline SnSe was obtained. This work set up a forceful example that a texture-control approach can be utilized to enhance the thermoelectric performance effectively.