An atomically thin layer of Ru/MoS2 heterostructure: structural, electronic, and magnetic properties†
Abstract
The fabrication of a transition metal (TM) atomically thin layer with robust ferromagnetic ordering (FM) for the continuous miniaturization of spintronic and quantum computing devices is desired. Through first-principles calculations, we establish that Ru atoms can be epitaxially aligned on MoS2 monolayers, thus forming an atomically thin layer of 2D Ru/MoS2 heterostructure with high structural stability. The Ru layer possesses a robust FM (more than 300 K) and an out-of-plane easy axis with the magnetic anisotropy energy (MAE) of ∼3.4 meV per atom. In particular, we find that the FM can be switched by an external electric field (Efield) of 1.5 V nm−1. We propose that this atomically thin layer of Ru/MoS2 heterostructure can be used as an alternative candidate for free-standing magnetic TM layers and provides new possibilities to design 2D spintronic devices.