Issue 14, 2016

Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion

Abstract

Solar energy conversion, particularly solar-driven chemical fuel formation, has been intensely studied in the past decades as a potential approach for renewable energy generation. Efficient solar-to-fuel conversion requires artificial photosynthetic systems with strong light absorption, long-lived charge separation and efficient catalysis. Colloidal quantum confined nanoheterostructures have emerged as promising materials for this application because of the ability to tailor their properties through size, shape and composition. In particular, colloidal one-dimensional (1D) semiconductor nanorods (NRs) offer the opportunity to simultaneously maintain quantum confinement in radial dimensions for tunable light absorptions and bulk like carrier transport in the axial direction for long-distance charge separations. In addition, the versatile chemistry of colloidal NRs enables the formation of semiconductor heterojunctions (such as CdSe/CdS dot-in-rod NRs) to separate photogenerated electron–hole pairs and deposition of metallic domains to accept charges and catalyze redox reactions. In this review, we summarize research progress on colloidal NR heterostructures and their applications for solar energy conversion, emphasizing mechanistic insights into the working principle of these systems gained from spectroscopic studies. Following a brief overview of synthesis of various NRs and heterostructures, we introduce their electronic structures and dynamics of exciton and carrier transport and interfacial transfer. We discuss how these exciton and carrier dynamics are controlled by their structures and provide key mechanistic understanding on their photocatalytic performance, including the photo-reduction of a redox mediator (methyl viologen) and light driven H2 generation. We discuss the solar-driven H2 generation mechanism, key efficiency limiting steps, and potential approaches for rational improvement in semiconductor NR/metal heterostructures (such as Pt tipped CdSe@CdS dot-in-rod NRs). Finally, we conclude by pointing out challenges to be addressed in future research.

Graphical abstract: Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion

Article information

Article type
Review Article
Submitted
11 Feb 2016
First published
04 Apr 2016

Chem. Soc. Rev., 2016,45, 3781-3810

Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion

K. Wu and T. Lian, Chem. Soc. Rev., 2016, 45, 3781 DOI: 10.1039/C5CS00472A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements