Issue 12, 2016

Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids

Abstract

As [FeFe]-hydrogenase models, the first thiodithiolate (TDT) ligand-containing μ-hydride complexes [(μ-TDT)Fe2(CO)4(PMe3)2(μ-H)]+Y (2–7, Y = Cl, ClO4, PF6, BF4, CF3CO2, CF3SO3) have been prepared by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (1) with the corresponding HY acids. While the protonation reactions are monitored by in situ1H and 31P{1H} NMR spectroscopy to show the isomer type and stability of 2–7, the structures of the isolated 2–7 are characterized by elemental analysis, spectroscopy and for some of them by X-ray crystallography. Although the H/D exchange of μ-hydride complex 7 (Y = CF3SO3) with D2 or D2O has been proved not to occur under the studied conditions, the H/D exchange of 7 with DCl gives the μ-deuterium complex [(μ-TDT)Fe2(CO)4(PMe3)2(μ-D)]+[CF3SO3] (8) in a nearly quantitative yield. To our knowledge, 8 is the first crystallographically characterized μ-deuterium-containing butterfly [2Fe2S] complex produced by H/D exchange reaction.

Graphical abstract: Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2015
Accepted
02 Jan 2016
First published
04 Jan 2016

Dalton Trans., 2016,45, 5021-5029

Author version available

Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids

L. Song, A. Zhu and Y. Guo, Dalton Trans., 2016, 45, 5021 DOI: 10.1039/C5DT04297F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements