Issue 42, 2016

A giant negative magnetoresistance effect in an iron tetrabenzoporphyrin complex

Abstract

By measuring the electrical resistivity in TPP[FeIII(tbp)(CN)2]2 (TPP = tetraphenylphosphonium and tbp = tetrabenzoporphyrin) under the application of a static magnetic field, a giant negative magnetoresistance (MR) effect with high anisotropy is observed. More specifically, the MR ratio at 13 K under a field of 9 T perpendicular to the c axis is −70%, whereas the MR ratio under a field parallel to the c axis is −40%. Furthermore, electron spin resonance (ESR) measurements indicate large anisotropy in the principal g-values of d spin (S = 1/2) in the [FeIII(tbp)(CN)2] unit; the g1 value almost perpendicular to the tbp plane and the g2 and g3 values almost parallel to the tbp plane are 3.60, 1.24, and 0.39, respectively. It is revealed that the anisotropy in the MR effect arises from the anisotropy in the d spin, suggesting that the d spins in TPP[FeIII(tbp)(CN)2]2 affect the π-conduction electron via the intramolecular π–d interaction. The anisotropy and magnitude in the giant negative MR effect for TPP[FeIII(tbp)(CN)2]2 are smaller than the corresponding values for the isostructural phthalocyanine (Pc) analogue TPP[FeIII(Pc)(CN)2]2. This is consistent with the fact that the intermolecular antiferromagnetic d–d interaction in TPP[FeIII(tbp)(CN)2]2 (suggested by the Weiss temperature: Θ = −8.0 K) is weaker than that in TPP[FeIII(Pc)(CN)2]2 (Θ = −12.3 K). This indicates that the minor modification in coordination complexes can significantly affect the MR effect via tuning the intermolecular d–d interaction as well as the intermolecular π–π overlap.

Graphical abstract: A giant negative magnetoresistance effect in an iron tetrabenzoporphyrin complex

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2016
Accepted
20 Jul 2016
First published
21 Jul 2016

Dalton Trans., 2016,45, 16604-16609

A giant negative magnetoresistance effect in an iron tetrabenzoporphyrin complex

M. Nishi, M. Ikeda, A. Kanda, N. Hanasaki, N. Hoshino, T. Akutagawa and M. Matsuda, Dalton Trans., 2016, 45, 16604 DOI: 10.1039/C6DT01911K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements