Mechanisms of the S/CO/Se interchange reactions at FeMo-co, the active site cluster of nitrogenase†
Abstract
The active site of the N2 fixing enzyme nitrogenase is a C-centred Fe7MoS cluster (FeMo-co) containing a trigonal prism of six Fe atoms connected by a central belt of three doubly-bridging S atoms. The trigonal faces of the prism are capped via triply-bridging S atoms to Fe1 at one end and Mo at the other end. One of the central belt atoms, S2B, considered to be important in the chemical mechanism of the enzyme, has been shown by Spatzal, Rees et al. to undergo substitution by CO, and also substitution by Se in the presence of SeCN−, under turnover conditions. Further, when turning over under C2H2 or N2/CO there is migration of Se to the other two belt bridging positions. These reactions are extraordinary, and unprecedented in metal chalcogenide cluster chemistry. Using density functional simulations, mechanisms for all of these reactions have been developed, involving the small molecules SCO, SeCO, C2H2S, C2H2Se, SeCN−, SCN− functioning as carriers of S and Se atoms. The possibility that the S2B bridge position is vacant is discounted, because the barrier to formation of a bridge-void intermediate with two contiguous three-coordinate Fe atoms is too large. A bridging ligand is retained throughout the proposed mechanisms. Intermediates with Fe–C(O)–S/Se–Fe cycles and with SCO/SeCO C-bound to Fe are predicted. The energetics of the reaction trajectories show them to be feasible and easily reversible, consistent with experiment. Alternative mechanisms involving intramolecular differential rotatory rearrangements of the cluster to scramble the Se bridges are also examined, and shown to be very unlikely. The implications of these new facets of the reactivity of the FeMo-co cluster are discussed: it is considered that they are unlikely to be part of the mechanism of the physiological reactions of nitrogenase.