Issue 2, 2016

Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors

Abstract

Miniaturized portable and wearable electronics have diverse power requirements, ranging from one microwatt to several milliwatts. Fiber-based micro-supercapacitors are promising energy storage devices that can address these manifold power requirements. Here, we demonstrate a hydrothermal assembly method using space confinement fillers to control the formation of nitrogen doped reduced graphene oxide and multi-walled carbon nanotube hybrid fibers. Consequently, the all-carbon hybrid fibers have tunable geometries, while maintaining good electrical conductivity, high ion-accessible surface area and mechanical strength; this allows us to address two important issues in micro-supercapacitor research. First, we found a clear correlation between the geometry of the hybrid fibers and their capacitive energy storage properties. Thinner fibers (30 μm in diameter) have higher specific volumetric capacitance (281 F cm−3), superior rate capability, and better length dependent performance. In contrast, larger-diameter hybrid fibers (236 μm in diameter) can achieve much higher specific length capacitance (42 mF cm−1). Second, we realized the first built-to-order concept for micro-supercapacitors by using all-carbon hybrid fibers with diversified geometry as electrodes. The device energy can cover two orders of magnitude, from <0.1 μW h to nearly 10 μW h, and the device power can be tuned in four orders of magnitude, from 0.2 μW to 2000 μW. Furthermore, multiple mechanically flexible fiber-based micro-supercapacitors can be integrated into complex energy storage units with wider operation voltage windows, demonstrating broad application potentials in flexible devices.

Graphical abstract: Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2015
Accepted
03 Dec 2015
First published
07 Dec 2015

Energy Environ. Sci., 2016,9, 611-622

Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors

W. Jiang, S. Zhai, Q. Qian, Y. Yuan, H. E. Karahan, L. Wei, K. Goh, A. K. Ng, J. Wei and Y. Chen, Energy Environ. Sci., 2016, 9, 611 DOI: 10.1039/C5EE02703A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements