Issue 4, 2016

Ionic thermoelectric supercapacitors

Abstract

Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient ΔT across the electrolyte, together with the ionic Seebeck coefficient αi. So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as αi = 10 mV K−1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (Δi)2. The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.

Graphical abstract: Ionic thermoelectric supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2016
Accepted
08 Feb 2016
First published
08 Feb 2016

Energy Environ. Sci., 2016,9, 1450-1457

Ionic thermoelectric supercapacitors

D. Zhao, H. Wang, Z. U. Khan, J. C. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren and X. Crispin, Energy Environ. Sci., 2016, 9, 1450 DOI: 10.1039/C6EE00121A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements