Significance of different carbon forms and carbonic anhydrase activity in monitoring and prediction of algal blooms in the urban section of Jialing River, Chongqing, China
Abstract
The Three Gorges Dam is one of the largest hydroelectric power plants worldwide; its reservoir was preliminarily impounded in 2003 and finally impounded to 175 m in 2012. The impoundment caused some environmental problems, such as algal blooms. Carbonic anhydrase (CA) is an important biocatalyst in the carbon utilization by algae and plays an important role in algal blooms. CA has received considerable attention for its role in red tides in oceans, but less investigation has been focused on its role in algal blooms in fresh water. In this study, the seasonal variation of water quality parameters, different carbon forms, carbonic anhydrase activity (CAA), and the algal cell density of four sampling sites in the urban section of the Jialing River were investigated from November 1, 2013 to October 31, 2014. Results indicated that CAA exhibited a positive correlation with dissoluble organic carbon (DOC), pH, and temperature, but a negative correlation with CO2 and dissoluble inorganic carbon (DIC). Algal cell density exhibited a positive correlation with flow velocity (V), pH, particulate organic carbon (POC), and CAA, a negative correlation with CO2, and a negative partial correlation with DIC. The relationship between CAA and algal cell density for the entire year can be described as cells = 23.278CAA − 42.666POC + 139.547pH − 1057.106. The algal bloom prediction model for the key control period can be described as cells = −45.895CAA + 776.103V − 29.523DOC + 14.219PIC + 35.060POC + 19.181 (2 weeks in advance) and cells = 69.200CAA + 203.213V + 4.184CO2 + 38.911DOC + 40.770POC − 189.567 (4 weeks in advance). The findings in this study demonstrate that the carbon utilization by algae is conducted by CA and provide a new method of monitoring algal cell density and predicting algal blooms.