Issue 11, 2016

Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

Abstract

With the ongoing efforts to promote the development of bio-based dibenzoxazine thermosets, we explore herein a new strategy aiming at the synthesis of asymmetric dibenzoxazine monomers from naturally occurring phenolic compounds, cardanol and vanillin. By taking advantage of the low reactivity of cardanol, a monosubstituted cardanol-based benzoxazine monomer was prepared and further coupled with vanillin to yield vanillin–cardanol di-benzoxazines. The structural features of the resulting products were substantiated by 1H NMR and HR-MS. The occurrence of the thermally-induced ring-opening polymerization was monitored by rheological measurements and DSC. At 190 °C the new asymmetric monomers showed a moderate gelation time (8 min) compared to 30–31 min revealed for cardanol-based (di-card) dibenzoxazines. Once polymerized, they exhibited a high Tg (129 °C), while the di-card flew under heating because of its low cross-linking density. Asymmetric monomers also exhibited lower melting temperatures than their symmetrical congeners based on vanillin, which significantly enlarge the processing window between the melting and polymerization temperatures up to 126 °C instead of 7 °C for symmetric vanillin-based dibenzoxazines. Therefore, such a strategy constitutes an efficient and versatile route for an easy elaboration of biobased monocomponent thermosets and can be applied to a wide range of phenolic compounds derived from renewable resources.

Graphical abstract: Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2015
Accepted
22 Feb 2016
First published
24 Feb 2016

Green Chem., 2016,18, 3346-3353

Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

L. Puchot, P. Verge, T. Fouquet, C. Vancaeyzeele, F. Vidal and Y. Habibi, Green Chem., 2016, 18, 3346 DOI: 10.1039/C5GC03102H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements