Issue 21, 2016

An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone

Abstract

γ-Valerolactone (GVL) is a biomass-derived solvent which completely solubilizes all fractions of lignocellulosic biomass, leading to the recovery of polysaccharides (cellulose and hemicellulose) as soluble carbohydrates at high yields (>70%) without the use of expensive reagents, like enzymes and ionic liquids. Biological upgrading of carbohydrates to biofuels or bio-based chemicals requires that the carbohydrates are separated from GVL. We demonstrate that an engineered solvent system consisting of GVL, water and an organic co-solvent is mono-phasic at the temperatures used for biomass fractionation (e.g., 160 °C) and is bi-phasic at lower temperatures (e.g., room temperature). The advantage of using this engineered solvent system is that the carbohydrates are spontaneously separated from organic solvent components into an aqueous hydrolysate stream, thereby avoiding the need for expensive and potentially hazardous separation processes, such as operation at elevated pressures required for separation using liquid CO2. We also show that the organic co-solvent can be selected from an array of organic components, leading to a trade-off between the efficacy of carbohydrate separation and the ‘greenness’ of the solvent. We show further that toluene is a promising co-solvent component, and techno-economic analyses of the process, wherein toluene is used as a co-solvent, lead to a minimum selling price of ethanol of $3.10 per gallon of gasoline equivalent.

Graphical abstract: An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone

Article information

Article type
Communication
Submitted
17 Aug 2016
Accepted
22 Aug 2016
First published
22 Aug 2016

Green Chem., 2016,18, 5756-5763

An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone

A. H. Motagamwala, W. Won, C. T. Maravelias and J. A. Dumesic, Green Chem., 2016, 18, 5756 DOI: 10.1039/C6GC02297A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements