Issue 7, 2016

A microfluidic, dual-purpose sensor for in vitro detection of Enterobacteriaceae and biotinylated antibodies

Abstract

In this paper, we present a versatile, dual-purpose sensor for in vitro detection of Enterobacteriaceae (e.g. Escherichia coli) and biotinylated antibodies (e.g. IgG rabbit polyclonal antibodies), based on different detection principles for each bioanalyte. These bioanalytes are tagged individually with functionalized magnetic microparticles, suspended into a static fluid and injected into a microfluidic channel. Without the need for bulk or complicated pumping systems, the functionalized microparticles are set in motion by a magnetic force exerted on them by integrated microconductors. The fundamental detection principle is the decrease in the velocity of the microparticles that are loaded with the respective bioanalyte, due to factors inhibiting their motion. The velocity of the unloaded, bare microparticles is used as a reference. We discovered a novel mechanism on which the constrained particle motion is based; in the case of E. coli, the inhibiting factor is the enhanced Stokes' drag force due to the greater volume and altered hydrodynamic shape, whereas in the case of biotinylated antibodies, it is the increased friction force at the interface between the modified microparticle and the biosensor's surface. Friction force is for the first time employed in a scheme for resolving biomolecules. Integrated magnetic microsensors are used for the velocity measurements by detecting the microparticles' stray field. Moreover, we developed a biocompatible, easy to implement and reliable surface modification that practically diminishes the problem of bioadhesion on the sensor's surface.

Graphical abstract: A microfluidic, dual-purpose sensor for in vitro detection of Enterobacteriaceae and biotinylated antibodies

Supplementary files

Article information

Article type
Paper
Submitted
03 Jan 2016
Accepted
18 Feb 2016
First published
18 Feb 2016
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2016,16, 1261-1271

A microfluidic, dual-purpose sensor for in vitro detection of Enterobacteriaceae and biotinylated antibodies

G. Kokkinis, B. Plochberger, S. Cardoso, F. Keplinger and I. Giouroudi, Lab Chip, 2016, 16, 1261 DOI: 10.1039/C6LC00008H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements