Issue 6, 2016

Electrochemical imaging for microfluidics: a full-system approach

Abstract

Electrochemistry is developed as a new chemical imaging modality for microfluidics. The technique is based on multipoint voltammetry using an embedded 20 × 10 miniature electrode array implemented on a customized printed circuit board. Electrode durability was enhanced by chemical modification of the electrode surfaces, which enabled continuous, stable use for over 2 months. A system-level approach enables automatic calibration, data acquisition and data processing through a graphical user interface. Following data processing, redox currents and peak positions are extracted from location-specific voltammograms and converted into pixels of an “electrochemical image”. The system is validated by imaging steady-state and dynamic laminar flow patterns of flow-confined solutions of the redox pairs Fe(CN)63−/4− or multi-redox environments that include coflowing Ru(NH3)62+/3+ solutions. The images obtained are compared with flow simulations and optical images for validation. A strategy to achieve measurements with spatial resolution smaller than the individual electrodes is also demonstrated as an avenue to enhance image spatial resolution. It is expected that this new approach to chemical imaging will expand the applicability of microfluidics in certain areas of chemistry and biology without requiring expertise in electrochemistry.

Graphical abstract: Electrochemical imaging for microfluidics: a full-system approach

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2016
Accepted
09 Feb 2016
First published
11 Feb 2016

Lab Chip, 2016,16, 1081-1087

Electrochemical imaging for microfluidics: a full-system approach

A. Kara, A. Reitz, J. Mathault, S. Mehou-Loko, M. A. Amirdehi, A. Miled and J. Greener, Lab Chip, 2016, 16, 1081 DOI: 10.1039/C6LC00077K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements