Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: a new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions†
Abstract
Nano-zirconia-supported sulfonic acid [nano-ZrO2-SO3H (n-ZrSA)] is synthesized by immobilizing sulfonic acid groups on the surface of nano zirconium dioxide to produce a novel heterogeneous reusable solid acid nanocatalyst. This new nanocatalyst is characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the Hammett acidity function and pH analysis. The introduced nano-zirconia-supported sulfonic acid is used as an efficient and recyclable catalyst for different heterocyclic multicomponent reactions such as the synthesis of hexahydroquinoline, 1,8-dioxo-decahydroacridine, polyhydroquinoline and 1,8-dioxo-octahydroxanthene derivatives. Optimization of the reaction conditions was studied using a central composite design (CCD) which is one of the most widely used response surface methodologies. The newly prepared heterogeneous solid acid nanocatalyst is easily separated and reusable for five cycles without any apparent loss of its catalytic activity, which confirmed the stability of the covalent bonding of the sulfonic acid groups. n-ZrSA has advantages such as its low cost, low toxicity, ease of preparation, good stability, high reusability and operational simplicity.