Issue 6, 2016

Shape controllers enhance the efficiency of graphene–TiO2 hybrids in pollutant abatement

Abstract

The addition of graphene nanoplatelets (GNP) to TiO2 nanoparticles (NPs) has been recently considered as a method to improve the photocatalytic efficiency of TiO2 by favoring charge carrier separation. Here, we show that it is possible to improve the efficiency of GNP–TiO2 composites by controlling the shape, stability, and facets of TiO2 NPs grown on GNP functionalized with either COOH or NH2 groups, while adding ethylendiamine (EDA) and oleic acid (OA) during a hydrothermal synthesis. We studied the photocatalytic activity of all synthesized materials under UV-A light using phenol as a target molecule. GNP–TiO2 composites synthesized on COOH-functionalized GNP, exposing {101} facets, were more efficient at abating phenol than those synthesized on NH2-functionalized GNP, exposing {101} and {100} facets. However, neither of these composites was stable under irradiation. The addition of both OA and EDA stabilized the materials under irradiation; however, only the composite prepared on COOH-functionalized GNP in the presence of EDA showed a significant increase in phenol degradation rate, leading to results that were better than those obtained with TiO2 alone. This result can be attributed to Ti–OH complexation by EDA, which protects GNP from oxidation. The orientation of the most reducing {101} facets toward GNP and the most oxidizing {100} facets toward the solution induces faster phenol degradation owing to a better separation of the charge carriers.

Graphical abstract: Shape controllers enhance the efficiency of graphene–TiO2 hybrids in pollutant abatement

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2015
Accepted
07 Jan 2016
First published
08 Jan 2016

Nanoscale, 2016,8, 3407-3415

Shape controllers enhance the efficiency of graphene–TiO2 hybrids in pollutant abatement

F. Sordello, E. Odorici, K. Hu, C. Minero, M. Cerruti and P. Calza, Nanoscale, 2016, 8, 3407 DOI: 10.1039/C5NR07257C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements