Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions†
Abstract
Morphology control is a promising strategy to improve the catalytic performance of Pt-based catalysts. In this work, we reported a facile synthesis of PtCu bimetallic alloy nanodendrites using Brij 58 as a template. The highly branched structures and porous features offer relatively large surface areas, which is beneficial to the enhancement of the catalytic activity for oxygen reduction reactions in fuel cells. In addition, the elimination of carbon supports showed an important effect on the stability of the catalysts. By tuning the ratio of Pt and Cu precursors, PtCu nanodendrites were almost four times more active on the basis of an equivalent Pt mass for oxygen reduction reactions than the commercial Pt/C catalyst.