Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots†
Abstract
Phosphine-free synthesis of CISe quantum dots (QDs) is highly desirable, yet it has been challenging. The main difficulty lies in achieving phosphine-free Se precursors. Most reported protocols for the synthesis of size-confined CISe QDs highly depend on the use of air-sensitive, toxic, and expensive alkylphosphines to prepare reactive Se precursors and to confine particle growth. Herein, we present a new amine/thiol combination-based route to Se precursors that may enable a general synthesis of phosphine-free selenide QDs. What's more, instead of the traditional “hot-injection” method, we also report the first one-pot noninjection synthesis of high quality CISe QDs enabled by our strategy. A very high chemical yield of ∼95% is demonstrated, as well as the facile gram-scale production of monodisperse CISe QDs. By simply adjusting the amount of 1-dodecanethiol used in the synthesis, we are able to produce CISe QDs with continuous tunability of the particle size from ∼2 nm to ∼10 nm, and hence their intrinsic optical properties.