Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging†
Abstract
Cell surface carbohydrates play significant roles in many physiological processes and act as primary markers to indicate various cellular physiological states. The functions of carbohydrates are always associated with their expression and distribution on cell membranes. Based on our previous work, we found that carbohydrates tend to form clusters; however, the underlying mechanism of these clusters remains unknown. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we found that with the contributions of lipid raft as a stable factor and actin cytoskeleton as a restrictive factor, carbohydrate clusters can stably exist with restricted size. Additionally, we revealed that the formation of most carbohydrate clusters (Gal and GlcANc clusters) depended on the carbohydrate-binding proteins (i.e., galectins) cross-linking their specific carbohydrate ligands. Our results clarify the organizational mechanism of carbohydrates on cell surfaces from their formation, stable existence and size-restriction, which promotes a better understanding of the relationship between the function and distribution of carbohydrates, as well as the structure of cell membranes.